Антиангиогенная терапия локализованных форм саркомы Юинга у пациентов детского возраста

Anti-angiogenic therapy for pediatric patients with non-metastatic Ewing's sarcoma

Резюме

Do 60–70% пациентов с локализованными формами опухолей семейства саркомы Юинга (СЮ) излечивается на сегодняшний день, но около трети случаев развивают резистентность к современным схемам системной терапии. Ранее мы показали, что прогнозирование развития у пациентов возможно посредством маркеров ангиогенеза (АГ): экспрессии мРНК гена TFFP2 (ингибитор путей тканевого фактора) и соотношения изоформ фактора роста сосудов VEGFA165/VEGFA189 в ткани опухоли перед началом лечения. Целью настоящего исследования была интенсификация терапии посредством VEGF-блокады для пациентов с прогнозируемым на основании уровня маркеров АГ неблагоприятным исходом заболевания. 123 пациента детского возраста с локализованными формами СЮ (29 основной и 94 контрольной группы) включены в исследование. Для пациентов основной группы в проспективном режиме определялись маркеры АГ, и при неблагоприятном прогнозе стандартный терапевтический план был интенсифицирован посредством использования препарата бекаразумаб. Для основной группы констатированы лучшие показатели 5-летней СБС (82,8% vs 60,1%, p<0,05), ОВ (84,4% vs 64,8%, p<0,05) и КР (13,8% vs 37,1%, p<0,05) по сравнению с пациентами, у которых данная технология не применялась (контрольная группа). Использование антиангиогенной терапии особенно для случаев с прогнозируемой на основании молекулярных маркеров АГ химорезистентностью позволяет улучшить показатели 5-летней выживаемости у пациентов детского возраста с локализованными формами СЮ.

Ключевые слова: сарcoma Юинга, прогностические маркеры, ангиогенез, диагностика и лечение.

Abstract

About 30–35% of patients with non-metastatic Ewing’s sarcoma develop resistance to standard chemotherapy plans. Previously we have established the ability to predict poor outcome based on mRNA expression levels of both TFFP2 (tissue factor pathway inhibitor 2) and VEGFA165/VEGFA189 vascular endothelial growth factor isoforms ratio in pretreatment tumor tissue. 123 patients (29 of the main group, 94 – comparison group) with non-metastatic forms ES included in the study.
Антиангиогенна терапия локализованных форм саркомы Юинга у пациентов детского возраста

For patients of the main group angiogenesis markers were determined, and for patients with poor prognosis standard therapeutic plan has been strengthened through bevacizumab (VEGF inhibitor). 5-year event-free survival (82.8% vs 60.1%, p<0.05), overall survival (84.4% vs 64.8%, p<0.05) and cumulative incidence of recurrence (13.8% vs 37.1%, p<0.05) was better for the basic group compared with patients in whom this technology has not been applied (control group). The use of anti-angiogenic therapy personally for cases with predicted (based on molecular angiogenesis markers) chemoresistance can improve 5-year survival rate for pediatric patients with non-metastatic Ewing’s sarcoma. Anti-angiogenic therapy may be effective for patients with poor (based on angiogenesis markers in pretreatment tumor tissue) prognosis.

Keywords: angiogenesis, pediatric patients with Ewing’s sarcoma, diagnosis and management, prognostic markers.

ВВЕДЕНИЕ

Термин «опухоли семейства саркомы Юинга» (СЮ) объединяет классическую костную СЮ, экстраракельную СЮ, опухоль Аскина грудных стенок и перифирерическую примитивную нейроэндокринную опухоль. Все эти саркомы происходят из общего мезенхимального источника, имеют общие генетические поломки (связанные с транслокацией 22-х хромосом) и являются высокопотенциальными новообразованиями с высоким потенциалом развития и метастазирования [1-4]. Локализованные (неметастатические) формы составляют более 70% всей СЮ. Около трети случаев с локализованными формами демонстрируют терапевтическую резистентность новообразования, несмотря на использование различных вариантов полииммитерапии на протяжении последних десятилетий [5, 6]. Кlassические клинические характеристики (пол, возраст, локализация, размер опухоли, уровень лактатдегидрогеназы и др.) характеризуются широким диапазоном параметров и не используются в актуальных клинических протоколах для стратификации плана индивидуальной терапии [7, 8]. Молекулярные маркеры неолаптического процесса на сегодняшний день рассматриваются как в качестве прогностических факторов, так и в качестве объектов целевой (таргетной) терапии. Ангиогенез (АГ) – процесс формирования опухолью собственной сосудистой сети, является безоговорочным условием развития и распространения новообразования [9, 10]. Ранее мы установили, что уровень маркеров АГ (экспрессия mPHK гена TFPI2 (ингибитор путей тканевого фактора) и соотношение изоформ фактора роста сосудов VEGFA165/VEGFA189) в ткани опухоли перед началом лечения позволяет дифференцировать пациентов с локализованной СЮ на группы благоприятного и неблагоприятного исхода заболевания [11].

ЦЕЛЬ ИССЛЕДОВАНИЯ

Определить эффективность интенсификации лечения посредством блокады АГ для пациентов с прогнозируемым на основании уровней маркеров АГ неблагоприятным исходом заболевания.

МАТЕРИАЛЫ И МЕТОДЫ

В исследование включены 123 пациента с локализованными опухолями семейства СЮ, которые с 1999 по 2015 г. проходили диагностический комплекс и получали лечение в Республикаанском научно-исследовательском центре детской онкологии, гематологии и иммунологии РНПДОМ, Республика Беларусь [12]. Исследование одобрено локальным этическим комитетом. Изучался материал первичной опухоли, полученный в результате диагностического оперативного вмешательства (биопсии) до начала специального лечения. Пациенты, получавшие противопухоловое лечение до взятия образца ткани, были исключены из исследования. Критерием включения пациента в исследование являлось патологическое, иммуногистохимическое и молекулярно-биологическое (установление посредством полимеразной цепной реакции в определенном времени наличия в тканях опухоли и костном мозге трансформированных с 22-й хромосомой: t(11;22), t(21;22), t(7;22), t(17;22), t(9;22)) подтверждение диагноза. Контрольную группу составили пациенты (n=94) с локализованными формами СЮ, лечившиеся в РНПДОМ с 2010 г., в основную вошли 29 пациентов за временной промежуток с 2011 по 2015 г. Всем пациентам осуществлялся локальный контроль (операция, операция + лучевая терапия, только лучевая терапия). Химиотерапию контрольной группы предусматривало использование винкристина, доксорубицина, ифосфамида, циклосфамида, цисплатина, актиномицина D, бусулфана, мелфалана [10]. Для пациентов основной группы (n=29) режим химиотерапии включал четырехдневные блоки индукции (винкристин, доксорубицин, ифосфамид, цисплатин) и консолидирующий курс (трихомикомвентный амфостил, ифосфамид, актиномицин D) [10]. При постановке диагнозов основной группы уровень экспрессии mРНК TFFI/2 и соотношение изоформ VEGFA165/VEGFA189 в ткани опухоли исследовались на протеомном уровне. В качестве молекулярной комбинации неблагоприятного прогноза (MКНП) нами ранее был определён уровень экспрессии mРНК гена TFFI/2 <0,8 и соотношение изоформ VEGFA165/VEGFA189 ≤1,0 в ткани опухоли перед началом терапии [11]. В случае MKНП стандартная терапия была усилена посредством назначения препаратов беказикумаб в дозе 7,5 мг/кг в день 1 каждого блока терапии. Для пациентов с молекулярной комбинацией благоприятного прогноза антиангиогенная терапия не проводилась. Длительность бессобытийной выживаемости (BCB), общей выживаемости (OB) и наблюдаемой частоты рецидивов (КЧР) исчислялась от времени постановки диагноза.

Молекулярно-биологические методы

Образцы тканей были получены непосредственно во время операции, немедленно доставлены и заморожены в жидкого азоте. Использовался гомогенизатор Retsch (XX, Германия). Для приготовления РНК преобразовывалась в кислоту и обратной транскрипция — полимеразной цепной реакцией в реальном времени (реал-тайм ПЦР), толщина выделялась с использованием RNeasy Mini Kit (Qiagen, XX, Germany) по инструкции производителя. Количество показатели концентрации РНК оценивали посредством спектрофотометрии.
Тотальную РНК (1,5 мкг) из ткани конвертировали в первую цель ДНК с использованием случайного праймера (0,3 мкг) и обратной транскрипции через 200 U мышечного вируса лейкемии (Moloney murine leukemia virus, M-MLV; Promega, WI, USA).

Три гена были исследованы в оригинальных образцах: VEGFA165, VEGFA189 и TFPI-2. В качестве внутреннего контрольного гена использовался ген глиоксидазы (GAPDH). Количественное определение генов осуществлялось посредством использования метода флюоресцентной ПЦР на основе реального временного (Taqman). ПЦР в реальном времени для генов VEGFA и TFPI-2 проводилась с использованием коммерческих систем (Taqman Gene Expression Assays: Applied Biosystems, Foster City, CA, ID 580900054 и 580197918, соответственно). Праймеры и зоны для количественной оценки VEGF изоформ в ПЦР в реальном времени были использованы, как описано в публикации Gustafsson et al. [15]. Реакции проводились в 20 мкг реакционной смеси с окончательным разведением 1х в Taqman Mastermix, Applied Biosystems в соответствии с протоколом производителя и с помощью оборудования Tcycler (Bio-Rad, Hercules, CA) в режиме реального времени. Относительные величины mRNA генов в образцах были рассчитаны по показателям стандартных кривых, полученных путем аппликации сигнальных данных на контрольную выборку.

Статистический анализ данных проводился с использованием программы R-Statistics, версия 2.2.0. R Foundation for Statistical Computing, лицензия GNU GPL. Оценка статистической значимости различий между сравниваемыми количественными показателями проводилась U-критерием теста Манна–Уитни. Сравнение в группах по индивидуальным параметрам проводилось с помощью χ² теста. Для оценки выживаемости пациентов применялся метод Kaplan–Meier. Различия в выживаемости оценивались с использованием log-rank теста. Кумулятивная частота возникновения событий рассчитывалась методом конкурирующих рисков, различия кумулятивных частот оценивались с использованием теста Gray. Все различия считались статистически значимыми при p<0.05.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Пациентам основной группы с локализованными формами СИО при инцидентальной диагностике в проспективном режиме определялась уровень экспрессии mRNA генов TFPI-2 и соотношение VEGFA165/VEGFA189 в ткани опухоли.

Результаты экспрессии mRNA генов TFPI-2 и соотношения VEGFA165/VEGFA189 в ткани опухоли в группе пациентов с локализованными формами СИО представлены на рис. 1. Как представлено на рис. 1, 14/29 (48,2%) пациентов были локализованы вне области МКНП, у них констатирован благоприятный исход заболевания (все пациенты живы без событий) после проведения стандартной системной терапии. 15/29 (51,8%) пациентов перед началом системной терапии были локализованы в области МКНП, для них лечение было интенсифицировано посредством использования антиангиогенной терапии.
терапии. Отрицательные события и неблагоприятный исход заболевания (4 рецидива, 1 токсическая смерть) констатированы только у пациентов, локализованных в область МКНП. На момент анализа 1 пациент с рецидивом жив и находится во второй ремиссии.

Были оценены показатели БСВ, ОВ и КЧР у пациентов в зависимости от наличия МКНП.

Показатель 5-летней БСВ пациентов без наличия МКНП составил 100%. Показатель 5-летней БСВ пациентов с наличием МКНП был 66,7%.

Пятилетняя БСВ пациентов объединенной когорты составила 82,8%.

Показатель 5-летней ОВ пациентов без наличия МКНП составил 100%. Показатель 5-летней ОВ пациентов с наличием МКНП был 70,0%.

Показатель 5-летней ОВ пациентов объединенной когорты составил 84,4%.

Показатель КЧР за 5-летний период наблюдения пациентов без наличия МКНП составил 0%. Показатель КЧР пациентов с наличием МКНП был 26,7%. Показатель КЧР всех пациентов объединенной когорты составил 13,8%.

Далее мы сравнили показатели выживаемости – БСВ, ОВ и КЧР – у пациентов с локализованными формами опухолей семейства СЮ до контрольная группа (основная группа) и после (основная группа) использования стратегии VEGF-блокады в зависимости от уровня молекулярных маркеров сигнализации.

Показатели 5-летней БСВ пациентов основной и контрольной групп представлены на рис. 2.

Как представлено на рис. 2, показатель 5-летней БСВ основной группы составил 82,8%, у пациентов контрольной группы он был 60,1% (p=0.05).

© Наука. Трансфузология. Восточная Европа, 2017, том 3, № 3
Антиангиогенная терапия локализованных форм саркомы Юинга у пациентов детского возраста

Рис. 2. БСВ пациентов основной и контрольной группы. Основная группа: n=29, 24 без события [82,8%±7,0%]; контрольная группа: n=94, 54 без события [55,5%±5,4%], на отсечке 5 лет [60,1%±5,1%]

Показатели 5-летней ОВ пациентов основной и контрольной группы представлены на рис. 3.

Как представлено на рис. 3, показатель 5-летней ОВ основной группы составил 84,4%, у пациентов контрольной группы он был 64,8% (p<0,05).

Рис. 3. ОВ пациентов основной и контрольной группы. Основная группа: n=29, 25 живы [84,4%±7,0%]; контрольная группа: n=94, 58 живы [59,3%±5,3%], на отсечке 5 лет [64,8%±4,9%]

Показатели КЧР пациентов основной и контрольной группы за 5-летний период наблюдения представлены на рис. 4.
Как представлено на рис. 4, показатель КЧР за 5-летний период нарушения основной группы составил 13,8%, у пациентов контрольной группы он был 37,1% (p<0,05).
Современные таргетные препараты, направленные на подавление опухолевых сосудов, вызывают несомненный интерес в качестве варианта усиления антинеопластического воздействия [14, 15]. Вместе с тем, первые опыты для СО в североамериканских исследованиях Children's Oncology Group (COG) использовали метрономную ангиогенезную терапию: винblastин и целекоксib совместно с бавозой [16, 18]. В настоящий момент в Европейском союзе и Соединенных Штатах Америки проводятся несколько исследований эффективности блокады AG при СО [17, 18]. В одном из них с 2007 г. американские исследователи предложили использовать бавозу/умаб в режиме синхронизации вместе со стандартной химиотерапевтической схемой...
для пациентов, рефрактерных к индукционной полихимиотерапии (№ протокола NCT00516295) [18]. Кооперативная мультицентровая шту- дия, в 2008 г. стартовавшая в странах Западной Европы (Франция, Нидерланды, Италия, Великобритания), также основанной своей целью за- являет оценку эффективности применения ингибитора роста сосудов опухоли — бевацидмаба, но уже в первую линию лечения, для детей от 2 до 17 лет с первично-метастатическими формами СЮ (№ протокола NCT00643565) [18].

В нашем исследовании бевацидмаб дополнил стандартную цитостатическую терапию пациентам с локализованными формами СЮ, у которых был спрогнозирован высокий риск возврата заболевания на основании уровней маркеров аниоогенеза в опухолевой ткани перед началом лечения. Для пациентов (51,7%), которым в проспективном ре- зультате была спрогнозирована неблагоприятный исход заболевания, стандар- тный терапевтический план был интенсифицирован посредством блокады аниоогенеза препаратами бевацидмаба. Пятилетняя СВС для них составила 66,7%, СВС пациентов (48,3%), у которых был спрогнозирован благоприятный исход, была 100%. Пятилетняя ОВ пациентов с прогно- зируемым благоприятным исходом была 100%. Пятилетняя ОВ пациентов с неблагоприятным исходом, для которых была применена VEGF-блокада, составила 70,6%.

У всех остальных пациентов с локализованной СЮ, у которых осущест- влялась антиангиогенная терапия, основываясь на уровне маркеров АГ был спрогнозирован один из двух сценариев: динамика уровня маркеров АГ к моменту окончания курса терапии, которая была спрогнозирована по СВС пациента (82,8% vs 60,1%, p<0,05), ОВ (84,4% vs 65,8%, p<0,05) и КЧ (13,8% vs 37,1%, p<0,05) по сравнению с пациентами, у которых данная технология не применялась.

Таким образом, продемонстрировано, что антисемейная терапия может быть эффективна при персональном назначении пациентам с прогно- зируемым (на основании уровня маркеров АГ в ткани опухоли) неблагоприятным исходом заболевания.

ЗАКЛЮЧЕНИЕ

Применение антисемейной терапии персонально для случаях с прогно- зируемым на основании молекулярных маркеров АГ химо- резистентностью новообразования позволяет улучшить выживаемость для пациентов детского возраста с локализованными формами СЮ.

ЛИТЕРАТУРА

Оригинальные исследования. Научные статьи

Републике Беларусь (Organizational and methodological assistance provided by a public institution RSFC) [(Организационная и методологическая помощь предоставлена научно-исследовательским центром RSFC)]

[Ошибки в тексте, требующие исправления]